Temperature-Dependent Non-linear Resistive Switching Characteristics and Mechanism Using a New W/WO3/WOx/W Structure

نویسندگان

  • Somsubhra Chakrabarti
  • Subhranu Samanta
  • Siddheswar Maikap
  • Sheikh Ziaur Rahaman
  • Hsin-Ming Cheng
چکیده

Post-metal annealing temperature-dependent forming-free resistive switching memory characteristics, Fowler-Nordheim (F-N) tunneling at low resistance state, and after reset using a new W/WO3/WOx/W structure have been investigated for the first time. Transmission electron microscope image shows a polycrystalline WO3/WOx layer in a device with a size of 150 × 150 nm(2). The composition of WO3/WOx is confirmed by X-ray photo-electron spectroscopy. Non-linear bipolar resistive switching characteristics have been simulated using space-charge limited current (SCLC) conduction at low voltage, F-N tunneling at higher voltage regions, and hopping conduction during reset, which is well fitted with experimental current-voltage characteristics. The barrier height at the WOx/W interface for the devices annealed at 500 °C is lower than those of the as-deposited and annealed at 400 °C (0.63 vs. 1.03 eV). An oxygen-vacant conducting filament with a diameter of ~34 nm is formed/ruptured into the WO3/WOx bilayer owing to oxygen ion migration under external bias as well as barrier height changes for high-resistance to low-resistance states. In addition, the switching mechanism including the easy method has been explored through the current-voltage simulation. The devices annealed at 500 °C have a lower operation voltage, lower barrier height, and higher non-linearity factor, which are beneficial for selector-less crossbar memory arrays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-elect...

متن کامل

Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures

UV-visible diffuse reflectance spectroscopy was used to probe the electronic structure and domain size of tungsten oxide species in crystalline isopolytungstates, monoclinic WO3, and dispersed WOx species on ZrO2 surfaces. UV-visible absorption edge analysis, CO2 chemisorption, and Raman spectroscopic results show that three distinct regions of WOx coverage on ZrO2 supports appear with increasi...

متن کامل

Catalysis science of the solid acidity of model supported tungsten oxide catalysts

A series of supported WO3 catalysts were synthesized by incipient wetness impregnation of ammonium metatungstate aqueous solutions onto Al2O3, TiO2, Nb2O5, and ZrO2 supports as a function of tungsten oxide loading. The resulting solid acid catalysts were physically characterized with in situ Raman and UV–vis spectroscopy and chemically probed by methanol dehydration to dimethyl ether (CH3OH-TPS...

متن کامل

3D Vertical Dual-Layer Oxide Memristive Devices for Neuromorphic Computing

Dual-layer resistive switching devices with horizontal W electrodes, vertical Pd electrodes and WOx switching layer formed at the sidewall of the horizontal electrodes have been fabricated and characterized. The devices exhibit well-characterized analog switching characteristics and small mismatch in electrical characteristics for devices formed at the two layers. The three-dimensional (3D) ver...

متن کامل

Molecular/electronic structure–surface acidity relationships of model-supported tungsten oxide catalysts

A series of model-supported WO3 catalysts were synthesized on preformed Al2O3, Nb2O5, TiO2, and ZrO2 supports by impregnation of aqueous ammonium metatungstate, (NH4)10W12O41·5H2O. The molecular and electronic structures of the supported tungsten oxide phases were determined with in situ Raman and UV–vis spectroscopy, respectively. The supported tungsten oxide structures are the same on all oxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016